
EÖtupon Teũqoc No. 11/12 — >AprÐlioc 2004 23

On using HEVEA, a fast LATEX to

html translator

Luc Maranget

1. Introduction

HEVEA is a LATEX to html translator. This article mostly intends to describe
how to use HEVEA in practice. As everyone who actually tried to translate a
reasonably complex LATEX document to html knows, such a task is seldom
automatic. A successful translation often requires to configure the translator
or to instruct it about particular LATEX constructs.

Section 2 explains my views on the difficulty to translate LATEX into html

and the basic principles of HEVEA design. The rest of the paper is devoted to
describing the translation of various documents, including the quite involved
task of altering a package.

HEVEA is available at http://pauillac.inria.fr/~maranget/hevea/.

2. Dream usage

Most users who discover a LATEX to html translator such as HEVEA have
the following expectation : getting a html-version of some document doc.tex,
should be as simple as typing “hevea doc.tex”, provided “latex doc.tex”
already works. And indeed, much of the work invested in the development
of HEVEA aim at fulfilling this expectation. For instance, the design of HEVEA
is much inspired by the design of LATEX and, more anecdotally, the hevea

command acts much like the latex as regards file searching or the usage of
auxiliary files.

However, HEVEA is not a clone of LATEX targeted to output html and we
now explain why.

2.1. What is LATEX ?

There is no such thing as a definition of LATEX, there is no even such a
thing as a reference implementation of LATEX. Nevertheless there exists a latex

24 Luc Maranget

program, but this program does not define LATEX, it processes TEX, with ad-
ditional constructs. Hence, full compatibility at the reference implementation
level with LATEX means producing a clone of tex, or adapting tex so that it
produces html (the latter approach is the one of [1]).

Furthermore, on the one hand, LATEX can be viewed as a mostly specifying
language, telling more about the structure of a document, than about how it
should be printed on sheets of paper. On the other hand, html is also a mostly
specification language, also telling more about the structure of a document,
than about how it should be displayed on a screen. As a matter of fact, the
viewer’s browser actually takes part to the formatting of the document. The
browser performs the low-level part of the job.

Note that viewing both LATEX and html as defining the structure of a
document is wrong in my opinion. Authors can legitimately claim some con-
trol on the final aspect of their work, either printed or displayed, how much
control is debatable. I would rather view both languages as high-level specifica-
tion of how the final document should be rendered, which of course meets the
document “structure”. High-level formatting means being aware of the final
medium, while ignoring the peculiarities of various medium implementations.
A construct to format a body of text using two columns is an example of such a
high-level specification. Numerous mandatory page break (in LATEX) or lengths
expressed in centimeters (in html) are counter-examples.

Provided that we accept LATEX and html as being mostly specification
languages implementing a LATEX to html translator is by far less involved
than reimplementing tex. For instance, while coping with (ordinary) tables
and arrays, any LATEX to html translator does little else than translating one
specification into another, and this is quite easy. The same applies to most
LATEX environments that naturally translate into html block level elements,
to LATEX sectioning commands that naturally translate into H elements, etc.
Additionally, we trade TEX exotic lexing conventions for more simple ones and
this is not a small benefit.

To conclude, we intentionally give up the idea of handling the full TEX
language and, instead, confine our attention to the LATEX subset. We shall
soon see how we define this subset.

2.2. Different media

Paper and web pages are different. None of the media is more powerful than
the other, they are just different things.

The weaknesses of web-page formatting are met while generating html:
html is not powerful enough to render some LATEX constructs. Those limita-

On using HEVEA 25

tions sometimes are arbitrary. For instance, we can render ordinary superscript-
ing such as x^2 (x2) by <I>x</I>². But we cannot properly
render limit-like superscripts or “stacked” symbols in the middle of a line —
consider $\stackrel{\star}{\rightarrow}$ (

⋆→). By contrast HEVEA handles
such “stacked” symbols in displays, see Section 4.2.

This limitation of inline superscripts in html is particularly annoying in
the case of vectors (\vec{u}, ~u). There is no universally acceptable way to
translate the sentence “Let ~u be a vector” into html. Instead of choosing a poor
rendering of inline vectors (and other math accents such as \hat, \overline
etc.), HEVEA does not even attempt to translate them. Instead, it issues a warn-
ing. Then, users can choose then own construct to replace vectors1.

However, web pages have their own strengths, and hypertext links certainly
are amongst them, But there are others, for instance, color changes are more
acceptable on screen than on paper. Hence, for a particular document it may
be acceptable to translate vectors by color changes.

The example of vectors shows that there cannot be a complete LATEX to
html translator. Or, if there is one, it chooses some rendering of a problematic
construct, where users would have preferred another.

2.3. Guidelines in developing HEVEA

By the previous discussion, a ”provably” compatible LATEX to html trans-
lator is a reimplementation of tex. Moreover, such a compatible translator may
not exist and not be what we want. . . Of course, compatibility is not be be ne-
glected but focusing on it is not the most productive attitude. While developing
HEVEA we focused on the following points

1. From the beginning, we have done our best effort to implement accept-
able practice in LATEX. We define such a practice by a liberal reading of
Leslie Lamport’s’ Blue book [6], enlightened by the LATEX companion [2].
Those books certainly have great impact on users practice. Moreover, the
latter intend to promote a standard practice in writing LATEX, pointing
out packages whose commands have a clean LATEX interface and are valid
substitute for TEX-isms, as the calc package for instance. However imple-
menting TEX-isms is rewarding, and we indulge in it from time to time,
without granting full TEX compatibility.

1 In the case of vectors a suggestion is made: loading the mathaccent package, which pro-
vides a default, quite unsatisfactory, rendering of vectors (~u) by superscripted arrows (u→).

26 Luc Maranget

2. More recently, implementing packages became the privileged direction
for enlarging the scope of HEVEA, as a satisfactory effort against benefit
trade-off .

3. HEVEA provides some constructs to control browser-like display. The ac-
ceptability of those by latex is a minor issue. Here, we may be wrong,
given the emergence of pdf which exhibits hypertext capabilities.

4. Overall, we have considered compatibility at a higher abstraction level.
The commands of LATEX make it a highly configurable tool, we have in-
sisted on giving users ways to configure hevea by writing code that tastes
like LATEX. Hence, implementing LATEX commands and environments, and
most of TEX macros, in a faithful and predictable manner is one of our
major design choices.

3. HEVEA in practice

The rest of this paper describes the production of html versions of docu-
ments written independently by 13 authors (including me).

The documents describe programming projects, they are written in French
and they size up from 2 to 9 pages. Authors provided one LATEX source file and
companion files, such as Postscript images or packages believed to be “non-
standard”. In practice only one author shipped an obsolete version of the al-

gorithm package. They were required to do so, since the documents were to be
gathered into a booklet.

Authors are computer scientists, they routinely use LATEX. However they
work in different areas and obviously have different habits. For instance, two
authors gave document in old LATEX (or 2.09) style, the other authors use
LATEX 2ε.

Out of these 13 documents, three documents translated without any prob-
lem. However, problems with the remaining 10 documents were minor, and
were solved in a few minutes and (except in one case) without altering the au-
thors source. As a matter of fact, all documents load a specific projetX package,
mostly intended to define page size. Definitions written to alter or complement
the behaviour of HEVEA can be regrouped in a projetX.hva file, which will be
loaded by hevea, where latex loads the projetX.sty file. Those definition are
written in the language understood by HEVEA, which is, well, a dialect of LATEX.
At the end of the translation process, the projetX.hva file was made of 41 line
or 25 definitions.

On using HEVEA 27

4. Warnings

It is worth noticing that all problems were unveiled thanks to HEVEA warn-
ings. Warnings include a source line number which enables to spot quickly the
problematic construct. This method is by far more productive than spotting
problems from visual examination of browser display. The most common warn-
ing is the “Command not found” warning, HEVEA cannot possess its own version
of every existing LATEX command. They are various reasons :

1. Some constructs may not posses any clear equivalent in html. Then the
warning draw users attention onto the problem and users are thus invited
to choose a rendering.

2. Some command just are TEX. Such warnings sometimes reveal a difficult
problem. Fortunately, most LATEX users use true TEX code in very limited
areas.

3. Some commands are defined in packages which hevea does not implement.

4. Some commands may have been forgotten.

There are others, more specific, warnings. For instance, HEVEA cannot imple-
ment negative lengths and thus warns users about them.

4.1. Simple “Command not found” warning

As an example of minor problematic rendering, one author used the sym-
bol \odot (⊙). But HEVEA does not provides command \odot. In fact, HEVEA
provides far less symbols than LATEX, since it knows about two character sets
only : iso-latin1 and a set of about 256 mathematical symbols2 known as “the
symbol font”. An easy solution is to replace ⊙ by a visually similar symbol,
which hevea can produce. Here, I chose ⊗. Then it suffices to insert the fol-
lowing definition in the projetX.hva file :

\newcommand{\odot}{\otimes}

Other examples of similar harmless unknown commands, are \varepsilon (ε),
defined as \epsilon (ǫ) and \ell (ℓ) defined as the letter “l”.

2 According to html 4.0 definition [7] more symbols are possible, and they can be specified
without the dubious <FACE=symbol>. . . element. However not all browsers are able
to display the whole variety of symbols defined as “html entities”

28 Luc Maranget

As an example of chunks of TEX code inside a document, one document
defines fonts the TEX way in its preamble. This can be solved using the image
facility (see Section 5 below).

Case (3) (non-existent package) occurred in two occasions. We examine
the first (and easiest) case. One document loads the fguill package. This small
package defines two commands \guillemotleft and \guillemotright ({ and
}). A clean solution is to implement the fguill package in HEVEA. That is, we
need to create a fguill.hva file that defines both commands and to put this
file somewhere in hevea search path, since hevea reacts to \usepackage{pgk}
by searching the file pgk.hva. Here, given our french computer, the fguill.hva
file simply contains:

\newcommand{\guillemotleft}{{}

\newcommand{\guillemotright}{}}

Of course, this solution relies on iso-latin1 being privileged both as input en-
coding and output encoding.

As an example some command that HEVEA should have known, another
document uses the \to command (→), which I did not know about. Appar-
ently, this command is defined in the TEX book [5] as an equivalent of the
\rightarrow command. HEVEA should probably be aware of this. Here writing
\let\to\righarrow in the projetX.hva file solves the problem. More, this
definition is now included into HEVEA main configuration file.

4.2. Mathematics

The documents include some mathematics. In sharp contrast with TEX,
html was not designed for typesetting mathematics and one cannot expect a
satisfactory rendering of every formula. However, HEVEA usually does a decent
job.

One author is a researcher in complexity theory and its For instance one of
the documents is written by a researcher in complexity theory and he is not
frightened by mathematics. His document includes various formulas, amongst
which we choose the following two :

\[

V=\int_0^{\infty}\frac{\sqrt x\,\ln^5x}{(1-x)^5}\,{\rm d}x

\]

and

On using HEVEA 29

\[

\alpha=\sqrt[3]{\frac12-\frac{5\sqrt3}{18}}.

\]

LATEX typesets these formulas as follows:

V =

∫

∞

0

√
x ln5 x

(1 − x)5
dx α =

3

√

1

2
− 5

√
3

18
.

A first run of HEVEA produces a warning: “Command not found: \sqrt”. And
indeed, HEVEA has no \sqrt command, since “big square roots” are difficult to
render in html3. The warning cannot be ignored since there is currently no
rendering of roots:

The first formula is simply wrong. Additionally, the second formula is rather
strange, since the optional argument [3] appears in output.

We now attempt a definition of roots as fractional exponents, by adding a
definition into the projetX.hva file.

\newcommand{\sqrt}[2][2]{\left(#2\right)^{1/#1}}

HEVEA now has a definition for \sqrt, as a command that takes two arguments,
the first of which being optional with default value “2”. That is, we adopt the
same interface as the \sqrt command of LATEX. The command body includes
constructs that are meaningfully to HEVEA: big delimiters and exponents. Any
person with some knowledge of LATEX can design such a replacement definition.
Rendering is now understandable, if not satisfactory4.

3 However the LATEX to html translator TTH [3] handles root signs, which HEVEA does
not.
4 Ironically, one of the motivations of TEX design was D.E. Knuth frustration with roots
being replaced by fractional exponents by pre-TEX typesetting systems.

30 Luc Maranget

Explaining HEVEA internals in detail would be out of scope, telling a little
about them does not harm. To typeset mathematics, HEVEA mostly relies on
two techniques: symbols are build from the limited set of glyphs offered by the
symbol font, and nested html tables are extensively used to express formula
structure. Here, the vertical parenthesis are made of two vertical stacks of five
glyphs, and the following picture illustrate how tables are organized.

Although HEVEA successfully handles the previous formulas, it cannot trans-
late any TEX mathematics. Apart from missing symbols, HEVEA suffers from
two, more severe, limitations:

— Inline (as opposed to display) mathematics are a real problem, since
inserting a TABLE element necessarily produces a line break in dis-
played html. Fortunately, complicated inline mathematics are quite rare,
and authors generally have complicated formulas displayed (i.e. they use
$$ or \[. . . \]).

— When it comes to typesetting mathematics TEX is really very powerful.
HEVEA is by nature less sophisticated, at some point it just gives up.
For instance, TEX box dimensions are characterized by three quantities
(height, width and depth or baseline vertical position). In the context of
formulas, the HEVEA analogs to TEX boxes are html tables and HEVEA
only handles one approximative quantity: the number of rows in a table.
This means that HEVEA is not the right tool to process mathematical texts
— but html neither is the right tool to display them. In case a document
includes complicated formulas, they should be translated into images, as
explained in the next section.

On using HEVEA 31

5. The image file feature

Sometimes, HEVEA just cannot process its input, but it remains acceptable
to have part of the input processed by LATEX and then to replace such input in
the HTML output by included gif (or PNG) images.

HEVEA provides some support for doing this. Any text enclosed in the special
toimage environment is echoed into the image file (which is a LATEX source file).
Additionally he special command \imageflush outputs a strict page break into
the image file, while it outputs the appropriate IMG element into the generated
html file. Some constructs of the source document are echoed to the image file
without user intervention. This includes the \documentclass command and
the \usepackage commands with all their arguments. Then, a later run of the
companion imagen script produces one image per page in the image file. The
imagen script first calls latex on the image file, and then a variety of image
processing tools.

5.1. Fancy symbols as images

HEVEA image feature can be used to replace problematic symbols (which we
would like not to change) by small images.

For instance, one author loads the amssymb package and then defines com-
mand \Z as :

\newcommand{\Z}{\mathbb{Z}}

The symbol Z (\Z) stands for the set of relative integers, following french
conventions. As students are familiar with this symbol, I decided not to change
it. Notice that the image file includes \usepackage{amssymb} and thus, the
command \mathbb can be used inside in it. Hence, a solution is to define \Z in
the projetX.hva file.

\newcommand{\Z}{\begin{toimage}\mathbb{Z}\end{toimage}\imageflush

After a run of hevea on this documemt transpos.tex, the image file
transpos.image.tex is as follows :

\documentclass{article}

\usepackage{projetX}

\usepackage{amssymb}

\pagestyle{empty}

32 Luc Maranget

\thispagestyle{empty}

\begin{document}

\mathbb{Z}

\clearpage% page: 0

\mathbb{Z}

\clearpage% page: 1

\end{document}

Notice that there are two invocations of \Z in this document. In HTML output,
the two occurrences of \Z are replaced by and
. The images themselves are produced by issu-
ing the command imagen transpos. However, when given the command-line
option -fix, the hevea command will call imagen automatically.

The author’s source can be left as it is. This results from HEVEA semantics
for \newcommand : if the defined command already exists, then hevea does not
fail, as latex would. Instead, hevea issues a warning and does nothing. Here,
the hevea command loads the projetX.hva file before processing the author’s
definition. Hence, hevea definition for \Z is the one from the projetX.hva file.

The \Z command story does not stop here, another author defined it for the
same purpose, but in a different way, by short-circuiting LATEX font selection
scheme.

\font\twelvesym=msbm10 at 12pt\font\tensym=msbm10\font\sevensym=msbm7

\font\fivesym=msbm5

\newfam\symfam

\textfont\symfam=\tensym\scriptfont\symfam=\sevensym\scriptscriptfont

\symfam=\fivesym

\def\sym{\fam\symfam\tensym}

\def\Z{{\sym Z}}

The solution is exactly the same as in the previous case: send all that source
into the image file. But here we cannot avoid altering author’s document. Fur-
thermore, the document should remain processable by LATEX. One solution is
bracket previous definitions into special comments:

%BEGIN IMAGE

\font\twelvesym=msbm10 at 12pt\font\tensym=msbm10\font\sevensym=msbm7

...

\def\Z{{\sym Z}}

%END IMAGE

On using HEVEA 33

HEVEA handles the special comments as \begin{toimage}. . . \end{toimage},
while LATEX ignore them (since they are comments!). As a consequence the
image file now includes the above definition of \Z. Then, it suffices to adopt
the following definition for \Z in the projetX.hva file:

\newcommand{\Z}{\begin{toimage}\Z\end{toimage}\imageflush}

This definition only appears absurd, it is not. It is intended for the consumption
of HEVEA and occurrences of \Z result in outputting the following two lines into
the image file.

\Z

\clearpage

The first line results from the interpretation of
\begin{toimage}\Z\end{toimage} while the second line results from
the interpretation of \imageflush.

As they stand, the two solutions for the \Z command problem are not com-
patible, since we now have two conflicting definitions for \Z in the projetX.hva
file. In practice we adopted a different solution, which we describe at the end
of the next section.

5.2. Included images

Many authors shipped images with their document. Authors use various
commands to include their images. For instance the document solide.tex uses
the \epsfbox command from the epsf package. To translate these Postscript
images into gif images automatically, it suffices to define \epsfbox in the
projetX.hva file.

\newcommand{\epsfbox}[1]

{\begin{toimage}\epsfbox{#1}\end{toimage}\imageflush}

Observe that this example is more involved than the previous one, since the
parameter #1 needs to be substituted. As a consequence of this substitution,
the solide.image.tex file includes the following lines:

\epsfbox{solide.eps}

\clearpage% page: 0

\epsfbox{deplacement.eps}

\clearpage% page: 1

34 Luc Maranget

Some authors are attentive readers of the LATEX “reference” books [6, 2], those
authors use the \includegraphics command from the graphics or graphicx

packages. HEVEA implements these packages, with definitions similar to the one
we just saw.

It is worth noticing that we finally solved the the problem of command \Z

in a general way by defining command \mathbb as follows:

\newcommand{\mathbb}[1]

{\begin{toimage}$\mathbb{#1}$\end{toimage}\imageflush}

6. A real difficulty

The one problem that frightened me the most was the absence of an HEVEA
implementation of the algorithm package.

One author shipped us a quite obsolete version of some algorithm package,
as an algorithm.sty file and used it to typeset a rather lengthy algorithm:

\begin{algorithm}{LLL(b_1,b_2,\ldots,b_n)}

\\ b_1^*\=b_1, B_1\=$<b_1^*,b_1^*>$

\\ \For i\=2 \To n \Do

\> \\ b_i^*\=b_i

\\ \For j\=1 \To $i-1$ \Do

\> \\ $\mu_{i,j}$\=$<b_i,b_j^*>/B_j$,

b_i^*\=$b_i^*-\mu_{i,j}b_j^*$

\<

\\ B_i\=$<b_i^*,b_i^*>$

...

\end{algorithm}

The key commands are \\, which starts a new line, \>, which increases inden-
tation, and \< which decreases indentation. This can be confirmed by looking
at latex output, then one also discovers line numbers.

An easy solution would of course have been to insert \begin{toimage},
\end{toimage} and \imageflush somewhere. But, in some sense, this is giving
up and I was ready for a slightly more involved solution. Thus, I started writing
an algorithm.hva file. My first attempt was rather minimal.

\input{algorithm.sty}

On using HEVEA 35

Doing so, I hoped that the algorithm package was written using more LATEX
than TEX. Then I ran hevea, without even looking at algorithm.sty. To
my surprise, hevea did not crash and there was not even a single warning.
Unfortunately, the output (see figure 1) was almost right. Everything looks

Figure 1: A first attempt of adapting algorithm for HEVEA.

fine except line numbers, which should remain on the left instead of sticking to
algorithm lines.

Now, we have to look at algorithm.sty in order to understand where
line numbers are produced. One quickly finds an algorithmline LATEX style
counter (defined with \newcounter) and the following command:

\def\instr@{\refstepcounter{algorithmline}%

\item[{\algonumberstyle\thealgorithmline}\hfill]}

Obviously, the \instr@ command outputs the line numbers and the algorithm
environment must be some kind of list environment.

In fact, such list environments are nested in algorithm presentation. The
\> command starts a new list environment with augmented \labelspace

(space between label and item), while the \< closes it and restore \labelstep to

36 Luc Maranget

its previous value (the indentation value is kept into a length register and such
registers are global). Moreover \instr@ is some internal name for \\ (i.e. there
is a definition \let\\=\instr@ somewhere). As a consequence \\ increases and
then typesets the line number, then LATEX inserts some \labelspace space, the
value of \labelspace being controlled by the nesting of list environment. All
this explains the above browser rendering, since HEVEA translates list environ-
ments into DL (description list) elements, ignoring \labelspace. Furthermore,
my browser systematically indents nested DL elements.

The package is cleanly written, with internal names for all commands. which
makes it easier to change the behavior of some commands by redefining them
after the package is loaded. First I decide to get rid of list environments,
because of the systematic indentation introduced by browsers. This can be
done by redefining the Blo@ck environment, which is the internal version of \>
and \<, the former being defined in algorithm.sty as \begin{Blo@ck} and
the latter as \end{Blo@ck}. The algorithm.hva file now is:

\input{algorithm.sty}

\renewenvironment{Blo@ck}{}{}

A test run of hevea now gives a lot of “\item outside a list-making

environment” warnings and line breaks and line numbers have disappeared
(see figure 2).

Figure 2: Suppressing list environments.

One easily restores them with the following redefinition of \instr@.

\renewcommand{\instr@}{\@br%

\refstepcounter{algorithmline}{\algonumberstyle\thealgorithmline}}

Command \@br is one of HEVEA internal commands: it outputs a
 tag,
which browsers interpret as a line break. Now, output (see figure 3) is almost
perfect, except for indentation which is missing.

On using HEVEA 37

Figure 3: Restoring line breaks and line numbers.

Restoring the indentation is more involved. HEVEA does not implement
length registers, but it features counters. A block@depth counter is introduced,
and the Blo@ck environment now keep track of its nesting level.

\newcounter{block@depth}

\renewenvironment{Blo@ck}

{\stepcounter{block@depth}}

{\addtocounter{block@depth}{-1}}

It remains, given an integer value d, to output some space quantity d times.
Let us first assume that such a command \do@indent exists, then we have our
final implementation of \instr@.

\renewcommand{\instr@}{\@br%

\refstepcounter{algorithmline}{\algonumberstyle\thealgorithmline}%

\@doindent{\value{block@depth}}}

To write \@doindent, I use another counter and the \whiledo command from
the ifthen package.

\usepackage{ifthen}%optional, hevea loads ifthen by default

\newcounter{algo@}

\newcommand{\algo@indent}{\hspace{10ex}}

\newcommand{\@doindent}[1]

{\setcounter{algo@}{#1}%

38 Luc Maranget

\algo@indent%

\whiledo{\value{algo@} > 0}

{\algo@indent\addtocounter{algo@}{-1}}}

Figure 4: Final rendering of the algorithm.

Rendering (see figure 4) is almost perfect, except for line numbers which should
be right-justified, a minor problem. Overall, I was extremely lucky, implement-
ing packages for HEVEA usually is more complicated. Here, the package performs
a rather simple task, and above all it is written in LATEX that HEVEA under-
stands. As a benefit of the approach of slightly altering the original package,
observe that we did not need to worry about other commands from this pack-
age, such as the algorithm environment itself (it shows a number and a title)
and the various keywords (e.g. \For, which gets translated to pour).

On using HEVEA 39

7. Writing a paper and a screen version at the same

time

I authored one document and was aware that it was to be processed by
HEVEA. This enabled me to perform a few actions to make this translation
easier. The first action is to load the hevea package:

\usepackage{hevea}

The hevea package is a LATEX package (HEVEA ignores \usepackage{hevea}),
it provides definitions for constructs which HEVEA is aware of by default.

7.1. Commands for hypertext links

The hevea package provides a innocuous definitions for the toimage environ-
ment and for the \imageflush command. But it also features a LATEXversion
of high-level hypertext commands. Figure 5 describes the most significant such
commands, with HEVEA and LATEX behavior.

Figure 5: High-level hypertext commands
Macro HEVEA LATEX

\ahref{url}{text} make text an hyperlink
to url

echo text

\footahref{url}{text} make text an hyperlink
to url

make url a footnote to
text, url is shown in
typewriter font

\ahrefurl{url} make url an hyperlink
to url.

typeset url in type-
writer font

\ahrefloc{label}{text} make text an hyperlink
to label inside the doc-
ument

echo text

\aname{label}{text} make text an hyperlink
target with label label

echo text

\mailto{address} make address a
“mailto” link to
address

typeset address in type-
writer font

As a first example, defined the author as follows:

\author{Luc Maranget\footnote{\mailto{Luc.Maranget@inria.fr}}}

40 Luc Maranget

As a consequence, both html and paper versions of my document include a
footnote with my email address, furthermore the footnote is clickable.

Since I encouraged students to contact me by giving them my email address
in a footnote, I also wished to collect my answers to their questions on another
web page (in French, La page de suivi), and I wanted all students to be aware
of this page. This is a perfect job for the \footahref command:

Important, il existe une

\emph{page de \footahref{\base/suivi.html}{suivi}}.

The word suivi gets decorated with a footnote in the LATEX version and with
an hyperlink in the html version. The command \base is defined somewhere
else as the URL where my text will finally be. It can be a good idea to define
it as “.” for HEVEA and as an absolute URL for LATEX.

I also intended to make both versions of the document to reference the
other. Here I need to have different texts in both versions. To that end, I used
the TEX style \ifhevea command, which HEVEA sees as true and LATEX sees as
false (provided of course the hevea package is loaded).

\begin{center}\large

\ifhevea

Cet inonci en \ahref{\base/anagramme.ps}{Postscript}.

\else

La page~web de cet inonci est disponible

en \ahrefurl{\base/anagramme.html}.

\fi

\end{center}

Finally, the document has a small bibliography, including a reference to a
paper which is down-loadable. Here, the explicit URL should appear in both
versions and I used the \ahrefurl command.

\bibitem{tst} Jon Bentley and Bob Segdgewick,

‘‘\emph{Fast Algorithms

for Sorting and Searching}’’,

Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete

Algorithms, Juanary 1997.

\ahrefurl{\url{http://www.cs.princeton.edu/~rs/strings/}}.

Notice that the argument to \ahrefurl is first processed by the \url command
from the url package. For our purposes we can see \url command as echoing

On using HEVEA 41

its argument verbatim, as LATEX \verb does. Indeed the URL includes the
active character ~, which is not to be interpreted with its usual meaning of
non-breakable space. That way, inserting the link and typesetting the URL
remains two separate tasks. It requires a bit of typing from users, but they can
understand more easily what happens in case of problem. Furthermore, writing
the LATEX version of \ahrefurl is trivial, which is not the case of \url whose
implementation has been performed by someone else, who arguably knows TEX
much better than I do.

7.2. Anticipated usage of the image feature

My document includes a PIC image. Such an image is described in a specific
language [4], and can then be translated into TEX by a specific gpic (Unix)
command. For instance I have an image dico.pic and I translate it into TEX
by issuing the (Unix) command:

gpic -t < dico.pic > dico.tex

Just after tex has processed the source included in the dico.tex file, the image
is present in the box \graph and hence can be put somewhere by \box\graph.

My code for the inserting the dico image reads as follows:

\begin{gpic}\input{dico.tex}\end{gpic}

That is, I follow the practice of hiding gory details by a clean LATEX interface,
here an environment. The LATEX definition of the gpic environment resides in
some local gpic.sty file:

\newenvironment{gpic}{\begin{center}}{~\box\graph~\end{center}}

The HEVEA definition of the gpic environment resides in some local gpic.hva
file:

\newenvironment{gpic}

{\begin{toimage}}

{\box\graph\end{toimage}\begin{center}\imageflush\end{center}}

My document includes the line \usepackage{gpic}, so that both latex and
hevea find the proper definition.

It is worth noticing that in HEVEA case, \imageflush appears centered,
since this is where the final link to the gif image is inserted. Whether the
\box\graph is centered or not is irrelevant, since this is food for the latex run
imagen, which later crops all margins.

42 Luc Maranget

8. Conclusion

I hope that the few examples described in this paper are enough to convince
the readers that HEVEA is worth a try. Above all, I hope that it will help
HEVEA users to appreciate HEVEA verbose reaction in front of source code it
cannot translate. I would like them to consider such numerous warnings more
as an assistance than as a nuisance.

Bibliography

[1] E. Gurari, TeX4ht: LATEX and TEX for Hypertext. Software and docu-
mentation, http://www.cis.ohio-state.edu/~gurari/TeX4ht/.

[2] M. Gooseens, F. Mittelbach, A. Samarin. The LATEX Companion
Addison-Websley, 1994.

[3] I. Hutchinson. TTH, the TEX to HTML translator. Software and docu-
mentation, http://hutchinson.belmont.ma.us/tth/

[4] B.W. Kernighan. PIC – A Graphics Language for Type•setting (User
Manual). AT&T Bell Laboratories, Computing Science Technical Re-
port No. 116. http://cm.bell-labs.com/cm/cs/cstr/116.ps.gz, re-
vised May, 1991.

[5] D.E. Knuth. The TEXbook. Addison-Websley, 1984.

[6] L. Lamport. A Document Preparation System System, LATEX, User’s
Guide and Reference Manual. Addison-Websley, 1994.

[7] D. Ragget, A. Le Hors and I. Jacobs. HTML 4.0 Reference Specification.
http://www.w3.org/TR/REC-html40, 1997.

