“eutypon24-25” — 2011/1/21 — 8:58 — page 3 — #7

E#rvmoy, tebyoc Ne 24-25 — "OxtdPproc/October 2010 3

John Plaice on Omega (§2) and Beyond
(an interview)

Apostolos Syropoulos

66, 28th October Str.

GR-67100 Xanthi

G'reece

E-mail: asyropoulos at yahoo dot com

John Plaice is known for his pioneering work on € (Omega), the first
project to expand the multilingual capabilities of TEX in the early and
mid-1990s. That project is now over, but as John explains in this inter-
view, its heritage is still alive in LuaTgX, but also in XML. John also
talks about Cartesian Programming, his new project that one day may
bring to life the Cartesian document.

Eutypon (Apostolos Syropoulos): Thanks for accepting the invitation to
talk to Eutypon. You are known in the TgX community for your Omega project,
but before we talk about TEX and Omega, would you mind telling us a few things
about you and your background in computer science?

John Plaice: I was born in Montreal in 1962, as the Canadian province of
Quebec was going through tremendous upheaval, with the French-speaking ma-
jority openly challenging the English-speaking élite that had been running the
province since the Seven Years War (1756-1763), which led to New France be-
ing taken over by the British. This process, now called La Révolution Tranquille
(The Quiet Revolution), pushed the Roman Catholic Church out of politics,
led to mass schooling for the French, and ultimately to French becoming the
official language of Quebec.

My father was an English teacher and my mother a translator (French to
English). When my sister, four years my elder, started French classes with an
English-speaker who could barely speak French, my parents decided to put her,
my brother and myself in a French-speaking school, because they could see that
in the future, it would be impossible to live in Quebec without speaking French.
At the time, the publicly funded schools were all confessional, and the French
schools were all run by the Catholic Church fundamentalists. As a result, we,
non-believing Protestant heretics, were refused access. So we ended going to
Cours Chateaubriand, a private Catholic school (the Church accepts heretics
if they pay), where the teachers were imported from France so we would be
taught with the right accent.



“eutypon24-25” — 2011/1/21 — 8:58 — page 4 — #8

4 A. Syropoulos

So, at the age of four, I went to French
class, where Mademoiselle Le Brun, 130 years
old and 1.30m tall, told the few English-
speakers that we could only speak French. I
did not speak a word in class for two months,
then I started to babble away in French. I
think that this decision by my parents to send
me to a French school was probably the most
important single one that they made for my
siblings and myself, and led ultimately to my
doing a PhD in France and working later on
a system called Omega.

We went to France for two years, then
came back to Canada, where I was put in
the English school system, because whenever
I spoke English, it was with an outrageous
French accent. I finished high school, did a
year of CEGEP, then headed to the University of Waterloo in southern On-
tario to study pure mathematics and computer science.

In my final year, I was skipping logic class with a fellow student, who told me
he was rushing around to find references for a scholarship to study in Germany.
I decided to do the same for France, and ended up with a scholarship from the
French government to study there.

After a long trip and lots of squabbles with French bureaucracy, I met
Joseph Sifakis, who became my master’s supervisor. In 2008, he won the Turing
Award, and I still recollect an experience working under him. He asked me one
day to do something, and I told him that it did not work. He insisted, so I
did as he asked, and met him again the next day. He told me that what I
had produced was shoddy. “Of course!” I replied, “I told you so yesterday.”
His reply was that if something asked for does not work, then change things
and produce something that does work. I still use this as a lesson for my own
students.

After my master’s, I continued in the same lab under Nicolas Halbwachs,
who had just invented, with Paul Caspi, a programming language called LUS-
TRE (Synchronous Real-Time Lucid), using synchronous dataflow. I wrote the
first semantics and the first compiler for this language. In the meantime, it
turned out that the people in Aérospatiale who did avionics for the Airbus
flight-control software were doing something similar, but without the linguistic
elegance of LUSTRE. I left France soon after finishing my PhD. Under the
hands of others, LUSTRE became a real success story. There is now a commer-
cial suite using LUSTRE at its very core called Scade, sold by Esterel Tech-
nologies, which is used to program software for reactor control and avionics,
including the Airbus A-380.

After my stay in France, I returned to Canada, where I spent two years
in Victoria, British Columbia, where I invented, with William (Bill) Wadge




“eutypon24-25” — 2011/1/21 — 8:58 — page 5 — #9

John Plaice on Omega and Beyond 5

(the inventor of Lucid), possible-worlds versioning, a simple way for producing
variants of software that assumes that all components of a system share the
same variant space. I then moved to Ottawa, Canada’s capital, where I worked
for two years. I then (1992) moved to Quebec City, to Laval University, where
I found that I needed to install all of the software that I was used to using in
previous work environments. One of these pieces of software was TEX. . .

E: So this is how you got involved with Omega?

JP: Several of the postgraduate students at Laval came from overseas, so as |
was installing TEX and making sure that the software worked for French and
English, I decided to see if I could get things to also work for Arabic, Vietnamese
and Chinese. I ordered all of the back issues of TUGboat and found that the
name Yannis Haralambous showed up regularly among the authors of papers.
I contacted him, and met up with him on a trip to Tunisia, with stopover in
Europe. In two days, we discussed at length many ideas, and came up with the
idea of the Omega project.

E: Today OpenType fonts include kerning information, all sorts of ligatures
and alternates and also some OpenType fonts include support for setting very
demanding math text. Also, it seems that programs like MS Word, and to a
lesser degree OpenOffice.orq Writer, can do everything TgX and its derivatives
can do. So what do you think: is there a future for TEX € Friends or is it an
evolutionary dead end?

JP: I am currently writing from India, which I “One Of the
first visited in 2002, with the support of the TEX

Users Group India and the Mahatma Gandhi us ef ul GSPGCtS
International Hindi University. I visited Thiru- Of I'EX 1S 1ts
vananthapuram, Chennai, Hyderabad and New o

Delhi. I was able to meet software people, aca- Stab"'hty°”
demics, and people in the bureaucracy of the

Central government. And they all told me of the need for some free software
that would properly support the Indian languages. Now, eight years later, I
hear exactly the same words. The need is still there, for at least one fifth of the
world’s population, who still do not, for the most part, read or write science in
their mother languages. The problem is that in this country, people who work
in computer science or in related areas work and live in English, not in the
vernaculars of the masses. And the success of free software is that the authors
must use it. ..

One might say, but the solutions provided by this company do the trick. And
the answer is, even from a technical point of view, only partially. One of the
useful aspects of TEX is its stability. The stability is not 100%, it is a lot more
stable than most other pieces of software. A company like Springer, with its
Lecture Notes series in Mathematics, Computer Science, Artificial Intelligence,
etc., strongly advises against the use of tools like MS Word, because the results
are not replicable. With TEX and similar pieces of software, I can run make on



“eutypon24-25” — 2011/1/21 — 8:58 — page 6 — #10

6 A. Syropoulos

every single article I have written, right back to my 1988 PhD thesis, and a
few minutes later, I have virtually identical copies to the original articles; the
look is even better on the screen than with the original, since the fonts are no
longer bitmap.

The survival of a piece of software that implements TEX is, I think, ensured
for a long time, because of the way it is used by mathematicians worldwide.
Whether this future piece of software is called TEX is another.

More generally, I think that there is a pressing need for having some tool
that has all of the power of TEX, all of the flexibility of fancier commercial
tools, and a level of stability that goes way beyond TeX, taking into account
all of the tools in the supply chain used to produce a given document. Which
leads to my current research, what I call Cartesian Programming. . .

E: Tell us about the Omega project, how you see it, and where it should go.

JP: The original goals of the Omega project were to support all of the world’s
languages and scripts, in all of the different ways in which these might be
typed in and printed out. And then we set out to do this, without drawing up
proper specifications. As a result, I went off to work on what was important,
and Yannis Haralambous went off to work on what was important... Without
clearly specified goals or objectives, these became more and more ambitious,
thereby making success a difficult task.

Given that Yannis had already drawn a number of quality fonts for a num-
ber of scripts, a natural division of labor took place. I worked on necessary
modifications to the TEX code base, while he worked on fonts. This division
was unfortunate, as it ultimately held back the project, since the developments
of PostScript, PDF and of the various font technologies all should have inter-
played with the layout engine. Not thinking about the likely necessary changes
meant that I limited myself to making mundane changes, instead of more far-
reaching ones, as Jonathan Kew later did with his X§TEX project.

Initially, I made the changes needed so that the 8-bit data structures of TEX
would allow 16 bits: number of input characters, number of glyphs in a font,
number of available registers of each kind, and so on. However, the natural way
of making these changes in Donald Knuth’s code produced monstrously sized
data structures. The core data structure in the TEX code base is a global table
called the table of equivalents, which was savagely criticized by Ken Thompson,
the inventor of Unix, soon after the code was published.

I had to develop a manner of transforming this table of equivalents into a
data structure that implemented this large table in a sparse manner. This kind
of task, a matter of a couple of hours in a decent language, was a real pain
in the Pascal Web that Knuth used for his Literate Programming. Notwith-
standing the praise for Pascal Web that Knuth heaped on himself, with the
adulation of his followers, it is a useless tool. The real structure of a Pascal
Web document is not the Pascal program that is generated, but, rather, the
paragraphs that are used to make the aesthetically pleasing printout that is
called TgX: The Program. To make a small change to the program may require



“eutypon24-25” — 2011/1/21 — 8:58 — page 7 — #11

John Plaice on Omega and Beyond 7

leafing through hundreds of pages just to make sure that nothing is missing.
A similar experience was related by Taco Hoekwater, who rewrote the Pascal
Web TeX code into C for the LuaTEX project: his conclusion was that this code
was unmodifiable in its Pascal Web form.

Once these changes were made, then I started to work on more interesting
changes, which always took far longer than they should have because of the use
of Pascal Web. These changes included developing mechanisms for handling
multiple character sets and encodings, Omega Translation Processes (regular
expressions for rewriting the input stream for transliteration and other process-
ing), and typesetting in multiple directions (vertical and horizontal, left-to-right
and right-to-left). I also added features for automatically generating XML tags
from TEX code, with hooks in the program and the input parsing to do this
properly.

However, many of these neat ideas were stillborn, as they were not really
tested. First of all, I did not need this tool for my own daily work, so I did
not push the testing myself. As for Yannis, often he would ignore the elegant
solutions that I developed, and hack together his own. As for the TEX commu-
nity, most people were impressed by this grandiose project, but did not want
to touch it, one of the reasons being that I dared, in public, criticize the Grand
Wizard. The cult of the personality is as pernicious in science as it is in politics.

While all this was going on, I was working on the development of possible-
worlds semantics, building tools for the creation of dynamic, multidimensional
Web pages that could be co-browsed by multiple viewers, each with their own
preferences. I knew that I wanted to add this sort of functionality into Omega,
but as time progressed, it became clear that it would be impossible to incor-
porate all this into the Pascal Web code base.

Furthermore, the theory for this work was not even fully developed. I
dropped the Omega project to focus on what I now call Cartesian programming,
whose foundations I have been able to define this year.

E: So was it all a waste of time?

JP: No, not at all. Omega has had influence in “ Omega has
unexpected ways. I noticed that the XML way for .
determining the character encoding is the same had znfluence
one that I invented for Omega; this may be an ac- m unea:pected
cident, but I did know and correspond with some ’
of the people involved in this stuff. In consulting ways.
for ArborText of Ann Arbor, Michigan, I helped
them update their typesetting engine so that it could print CJK fonts and
do right-to-left typesetting, so Fortune-1000 companies could print their doc-
umentation and reports in Chinese, Japanese, Korean, Hebrew, Arabic and so
on.

As for the font work done by Yannis Haralambous for Omega, some of the
fonts are used by Donald Knuth for his remarkable Art of Computer Program-
ming book series.



“eutypon24-25” — 2011/1/21 — 8:58 — page 8 — #12

8 A. Syropoulos

I attended the EuroTEX conference in 2009 in the Netherlands, and was
astounded to listen to a talk given by Hartmut Henkel of the LuaTgX project
present the multidirectional ideas of Aleph, which incorporates Omega. This
work was done entirely by myself, but he did not even know it!

I am encouraged by the fact that Taco Hoekwater had the courage to take
apart the Pascal Web code and stitch it back together in C. I think that parts
of this new code base could be adapted to become part of a new Cartesian
document model, which Blanca Mancilla, others and I are trying to develop.

E: What is your opinion of XyTEX and LuaTEX? And do we really need LuaTEX
when PerlTEX can do the same things?

JP: I think both projects are neat ideas, and deserve praise for actually pro-
ducing software that works and that people use.

XHATEX brought all the neat fonts available on one’s computer to the world
of TEX, without forcing a user to adapt those fonts to the TEX typesetting
engine. However, there are still teething problems. For example, I downloaded
a large manual explaining how to use X{IEX, and it turned out that I could
not read it, as it used non-embedded fonts that were not available on my Linux
box!

As XHTEX is used more and more, it would be nice to have some sort of
good-quality portable typesetting engine that could produce good results that
would guarantee replicability across multiple platforms. Then the wonderful
features of XHIEX would be compatible with the replicability results of TEX.
But this is probably a lot of work.

LuaTgX is interesting because the project began by taking apart the TEX
code, rewriting it in C, then putting in hooks so that the different components of
TEX could be manipulated in Lua. I personally like Lua because of its model of
tuples, similar to Perl hash arrays, which are relevant to my model of Cartesian
Programming.

I think that both LuaTgX and PerlTEX are working with the idea of ex-
tending the original TEX idea of document as program, as opposed to the XML
idea of document as tree. For both, the flexibility to the writer is increased,
as is the programmability. There is a cost, however: the searchable document
disappears into cyberspace.

E: Could you elaborate on this “new Cartesian document model”? What is it?
What do you expect to achieve with that for the TEX community or for computer
science in general?

JP: I have been working on something I call “Cartesian Programming” since
about 2008, and will be defending a French Habilitation thesis in Grenoble
on the topic in December 2010. The idea in Cartesian Programming is that
the coordinate system originally introduced by Descartes is relevant to all of
computer science. Any object, program, function, etc., varies in a number of
dimensions, including time and space. In Cartesian Programming, all objects



“eutypon24-25” — 2011/1/21 — 8:58 — page 9 — #13

John Plaice on Omega and Beyond 9

are assumed to vary with respect to the same set of dimensions; some dimen-
sions may be relevant to some objects while other dimensions will be relevant
to other objects. The same idea is used in physics: when writing differential
equations, one only refers to the dimensions of relevance, all others are just
ignored.

Cartesian documents take the same idea of multidimensionality and apply
it to documents. A document can be considered to be a multidimensional con-
tainer that is indexed by a context in a way that is compatible with Cartesian
Programming. A Cartesian document can only be added to, not subtracted
from. As a result, the idea of the permanent URL is extended to take into
account versioning of a document, as well as processing of the document, such
as typesetting. In each of these situations, the document grows, and can be
viewed in a richer and richer set of contexts.

I am not sure how this affects the TEX community. This is an intriguing
question, because I believe the Cartesian document allows us to continue to
consider a document as program, whilst still allowing searchability and repli-
cability, since one can always write a finer and finer context to retrieve more
and more specific details of a document.

Cartesian Programming is well advanced. Currently we have a programming
language called TransLucid, with a working interpreter; it is designed as a
coordination language on top of C++; variants based on other languages are
currently under study. Cartesian documents will follow, but the timeframe is
still unclear.

E: Dear John, we would like to thank you once more for your contributions in
the development of the future generations of TEX and for the extremely inter-
esting conversation we had. Good luck into your new Cartesian endeavours!

JP: Thank you!



